Table of Contents

About The Complete Friday Q&A: Volume 1........ccccooeiiiiiiiiiiiiieieeeee e 8
INEEOAUCTION ...ttt ettt et sbe et st 9
ACKNOWIEAZEIMENLS ...ttt ettt sttt e bt e e s e saeeenne 10
Multithreaded Programming and Parallelism OVErviewc.ccocccevevienienenieneeniennene. 11
BIOCKS 11 ODBJECTIVE-C ..ottt ettt et ite et e eseesnee e 14
Pros and Cons of Private APIScccooiiiiiiiiiiiiieee e 21
Thread Safety in OS X System Frameworksccooviviiiiiiiiiiiniiiieceeeee e, 24
Interprocess COMMUNICATIONeeuieriieeiieriieeiienieeeteeste et e stte et e seeeebeesneeenbeessaeenseesneeenne 29
How Key-Value Observing WOTKScccooiiiiiiiiiiiieieeiee e 33
COAE INJECHION ..evieiiieiiieiiecte ettt ettt et sat e et e st e et e e e abeenbeesnbeenbeesaseenseennnas 40
Profiling With Sharkccooiiiiiii e e 45
Operations-Based Parallelizationcccoocieiiiiiiiiiiniecee e 53
The Good and Bad of Distributed ODJECtSccceeviieiiiriieiieiiieiieee e 56
HOLIStic OPHMIZATIONiitiiiiiieiieeiieeiee ettt ettt ettt e st e et e e sateesbeasseeenseesneeenne 60
Using the Clang Static ANALYZETcccooiviiiiiiiiieieceee e 63
Intro to the Objective-C RUNIMEc.ooociiiiiiiiieiiiciiee e 67
ODbJECtiVE-C MESSAZINGeevuvieniieriieeiieeiieeite et e e ste et e sate et eesteeteesabeenbeessseeseesnseenseennnes 73
Objective-C Message FOrwardingccocceeeiieiiiniieniieiieeiiecee ettt 77
Multithreaded Optimization in ChemicalBurncocevieveiiiiniininiicnieeceesceeeee 82
Code Generation with LLVM, Part 1: BaSICS ...uuvvviiiiiiiiiiiiiiiiiieeieeeeeiiieeeeeee e 88
Code Generation with LLVM, Part 2: Fast Objective-C Forwardingccccceeeveeuennee. 96
Objective-C Class Loading and Initializationcceeeeeeiiiieniiiiiinienieeieceeeee e 115

Introduction to Val@rindcccoooiieiiiiiiiiiiie et 118

Mac OS X Process Memory StatiStICSccceirvierieriieniienieesiiesieeiee e eiee e eieesneeeeans 123
Type Qualifiers in C, Part 1ooccoiiiiiiiiiieeee e e 127
Type Qualifiers in C, Part 2cccoiiiiiiiiieiieeeeee et 131
Type Qualifiers in C, Part 3oooiiiiiiiiiiee e 135
Format Strings Tips and TTICKScccveriiiiiiiiiiieeeeee et 141
Practical BIOCKSccuoiiiiiiiiiiieeee et 146
Writing Vararg Macros and FUNCHONScc.cooiiiiiiiiiiiieiiieiieec et 158
Intro to Grand Central Dispatch, Part I: Basics and Dispatch Queuesccccccueenee. 162
Intro to Grand Central Dispatch, Part II: Multi-Core Performancec.cccccevieneenene 169
Intro to Grand Central Dispatch, Part III: Dispatch Sourcesccccooeevienieninicneennens 174
Intro to Grand Central Dispatch, Part IV: Odds and Endsccccoociiviiiinininiinienns 179
GCD PIACLICUITL ...ttt ettt ettt ettt b sae et 183
Care and Feeding of SINGIEtONScc.eevuiiiiiiiiiiiiieie e 194
Defensive Programmingcccooceeiieiiienienie ettt ettt eiee e e 200
Creating a Blocks-Based Object SYStemccceeviiiiieiiiiiieiecieeee e 205
A Preview of Coming AttraCtiONSccceerieeiiienieeiierieeiee et eee et see e e seaeebee e 215
Generators N ODJECHIVE-Cooouiiiiiiiiieiie ettt st s 216
Linking and Install NamMEsccccieiiiiiiiiiiiiieieee et 233
Dangerous Cocoa Callsc.eeiiiiiiiiiiiieiee ettt 236
Probing Cocoa With PYODBJCcocciiiiiiiiiiie ettt 240
Using Accessors in Init and Dealloccocoeoieiiiiiiiiiieiee e 246
Building Standalone iPhone Web APPScc.eeviiiiiiiiieiieiiieiieeee ettt 250

A GCD Case Study: Building an HTTP Servercccoeceeiieiiieiieniieieceeeeeee e 256

Highlights From a Year of Friday Q&Acooiiiiiiiiieieeeeee e 272
NSRUNLOOP INETNALS ..ottt et e 273
NSNOtICAtIONQUEUEeeeieiiiiiiiieiiie ettt ettt e et et eetae e e sae e e e aaeeeareeessbeeesaseeenaneas 284
Stack and Heap Objects in ObJECtiVE-Ccceeviiiiiieniieiieiieeieeee e 289
Toll Free Bridging INternalscccieriiiiiiiiiiiiieie et 293
Method Replacement for Fun and Profitccccooiiiiiiiiiiiieeeee 297
Error Returns with Continuation Passing Stylecccoooiiiiiiiiiiiniiieeeee 303
Trampolining Blocks with Mutable Codecocoiiiiiiiiiiiiiiiecee e 311
Character ENCOAINGSccueeiiiiiiiiiiieiieie ettt ettt ettt e saee e 324
FULUTES ..ttt ettt ettt st et esaeeeneens 330
ComPOUNd FULUIESeeiuiiiiiieiieiie ettt ettt et ettt e snee e 342
Subclassing Class CIUSTETSeeevierieeiieiieeiierie ettt ettt e et seteebee e eteesaeeenne 356
OPENCL BASICS ..eiiuiieiiieiieiieeieeeite ettt ettt ettt te st e et e et e eteesabeeseeenseenseesnseenne 361
Comparison of Objective-C Enumeration Techniquesccccoeceeveiieniineeicnicnennne. 369
Implementing Fast ENUMETrationc.ccoeoiiiiiiiieniieiieeieeiieeee e 373
Implementing @ Custom SIAETcceeriiiiiiiiieie e 382
Dealing with Retain CyCLescccciiiiiiiiiiiiiieieeeeee ettt 392
What Every Apple Programmer Should Knowcccccoooiiiiiiiiiiiiniieeeeeeee 401
Leopard Collection CIASSESccccuieriieriieiiiiiieeiee ettt ettt ieeseeesieesieeeaeeseeeeeeens 405
Implementing Equality and Hashingcccccooiiiiiiiiiiiiiiceeceee e 412
Background TIMETScc.ueiiiiiiiiiiieiieeie ettt ettt et e et e siae et esnbeeseens 419
Zeroing Weak References in Objective-Ccoccieviieiiiiiiieiieniieieseeeeee e 428

Implementing NSCOAING ...ccceeeruiiiiiiiieiiieieee ettt ettt st eaee e e 459
Defensive Programming in COCOQAcccuieruiiriieriieiiieiiesie et ete ettt eaee e eee s 468
INAEX .ttt ettt st 480

About The Complete Friday Q&A: Volume I

Friday Q&A is a biweekly series on Mac programming. It can be found online at
http://mikeash.com/pyblog/. Volume I is a full archive of all posts through August 2010.

The author gratefully acknowledges all of the topic and comment contributions to Friday
Q&A from its readers.

The Complete Friday Q&A: Volume I Copyright © 2008-2010 by Michael Ash
Mike Ash

mike@mikeash.com
http://mikeash.com/

http://mikeash.com/pyblog/
http://mikeash.com/

Introduction

I started NSBlog about five years ago with the intent of just having a place to
occasionally write about code and technical matters. Attempting to limit myself to meaty
posts ensured that content was sporadic, as meaty topics were hard to come by.

Eventually these posts drew in a relatively substantial amount of traffic. [wanted to
satisfy this newfound readership, but thinking of interesting things to write about was
tough. The solution to this dilemma was lurking in the cause: pull topics from the
readership!

Thus I announced Friday Q&A. Each week I would take a reader-submitted topic and use
that for a blog post. I didn't have high expectations but it seemed like it was worth a shot.

Response was tremendous! Each post gets a sizeable amount of readers who have posted
many intelligent and interesting comments. And although there have been a couple of
pauses in the schedule (and a shift to a biweekly schedule once the weekly schedule
became too demanding), Friday Q&A has been more or less continuously published ever
since. I have been honored to see a large number of unjustifiably kind comments and
recommendations about the series.

The idea for a book version has been floating around for quite a while. After a disastrous
encounter with the publishing industry, the thought of self-publishing began to look more
attractive. With the introduction of the iPad and the success of iBooks, selling as an ePub
through Apple's store seemed like the logical course of action.

This book is a compendium of all Friday Q&A articles from the first one on December
19, 2008 through the latest one as of this writing on August 27, 2010.

The content is mostly unedited from the original posts. This means that each chapter still
talks about "last week", and encourages the reader to return "next week". There are two
reasons for this. First, Friday Q&A is an inherently temporal series and this preserves that
feel in the book. Second, fixing up all of the articles to appear as though part of a
reference book would have been a lot of work, and like most programmers I am lazy.

Some articles link to code in my public Subversion repository. All of these links remain
valid. However, you may wish to check my github page first, as I have moved several
projects there and some of them are more up to date than the Subversion copy.

It's been a pleasure to write Friday Q&A over these past two years, and I hope to
continue for many more. Although the "next week" is out of date, the reader-driven
nature of the series is not. So as always, if you have an idea for a topic that you'd like to
see covered in Friday Q&A, send it in!

http://mikeash.com/svn/
http://github.com/mikeash/
mailto:mikeash.com

Acknowledgements

I would like to thank my reviewers, whose valuable input dramatically improved this
book. They are: Steven Vandeweghe, Vadim Shpakovski, Matthias Neeracher, Phil
Holland, Landon Fuller, David Helms, Joshua Pokotilow, Mike Shields, Jeff Schilling,
Jordan Breeding, Hamish Allan, Eimantas Vaiciunas, Ilya Kulakov, Cédric Luthi, Alex
Blewitt, and Kevin Avila.

I would also like to thank everyone who contributed the topic ideas used throughout this
book. Their names can be found at the beginning of each chapter.

Finally, I would like to thank everyone who has commented on one of my posts, e-mailed
about Friday Q&A, or simply read it. No matter what your contribution, it is appreciated.

10

Friday Q&A 2008-12-19: Multithreaded
Programming and Parallelism Overview

Related Articles

Thread Safety in OS X System Frameworksccoceeverieniineniicniiinenicneceeeee,
Profiling With Sharkcociiiiiiiii e
Operations-Based Parallelization..............cccoooiieiiiiiiiiiienieeiiee e
The Good and Bad of Distributed ODbjJects.........cceerieriiierieiiieiieeieeieeieeee e
HOIIStic OPMIZATIONeiiieiiieiieeie ettt ettt ettt et et eebeeeabeenbeesneas
Multithreaded Optimization in ChemicalBurnccceeeeviiriineniinienenienicncene
Mac OS X Process Memory StatiStiCSccouirrieriieenieeiieniieeie et eve e
Intro to Grand Central Dispatch, Part I: Basics and Dispatch Queues
Intro to Grand Central Dispatch, Part II: Multi-Core Performance.........................
Intro to Grand Central Dispatch, Part III: Dispatch Sourcesc..ccccevcvevenennnne.
Intro to Grand Central Dispatch, Part IV: Odds and Ends........ccccoceeviniininncnnenne.
GCD PIaCtiCUIMcouiiuiieiiinieeie ettt ettt sttt et sbe e st e b e
Dangerous Cocoa Calls.........cociiiiriiiiiiiniiieiene et

Great response last week. This week I'm going to merge Sam McDonald's question about
how I got into doing multithreaded programming and Phil Holland's idea of talking about

the different sorts of parallelism available.

Like a lot of computer programmers, I was always interested in making code run fast.

This led to better languages (I started in BASIC!), micro-optimization, and algorithms,
but ultimate performance means multiprocessing. The distributed.net and SETI@Home

projects showed the power of distributed computation.

Multithreading was also interesting in coming to OS X from the old Mac OS, where
multithreading was a lot more limited and difficult. At the time it wasn't about
performance, since most machines had only one CPU. But multithreading has lots of

other benefits for organization, design, and interactive GUIs so it was still highly useful.

Then the ongoing multicore revolution kicked off and made it clear that multithreading

was the way to go.

That's the why. The how is pretty boring. Just lots of work, reading, and experimentation

on all sorts of multiprocessing, not just threading. They're very different, but many

concepts are the same, and ideas from one can often help with the others. As with most

things, practice and experience makes a big difference.

11

So then we have the different forms of parallel processing available. There are actually a
lot of these, and I'm probably doomed to miss some, but:

1. Distributed computing. Probably the most visible example of this one for Mac
developers is distributed builds in Xcode. This is generally the most difficult to
build, the most expensive to take advantage of for the user, and therefore the
least useful. Bandwidth and latency between computers are horrendous compared
to what you get within a single machine, so it's hard to write something that goes
fast. Xcode can get away with it because it (usually) does a lot of processing for
each bit of data that it processes. Beyond the difficulty of achieving speed, you
also have to deal with a much more error-prone environment. You want to
recover gracefully if the user wanders out of wifi range, not lose a bunch of data.
Most of the time this is not worth it, especially if you're going to be shipping
consumer-level software.

2. GPGPU. Basically using the video card for computation. This is what GPULife
does. It's capable of immense power. A top-of-the-line video card can easily
outperform a top-of-the-line CPU by a factor of 50 with the right program. It's
also really hard. GPUs are extremely parallelized and have a considerably
different architecture from CPUs, so coding for them is hard and making them go
fast is harder. (Although even slow GPU code can run really fast due to the
amount of power available.) Technologies like CUDA and OpenCL promise to
make this sort of thing a lot better, although you're always going to be dealing
with the fact that it's a massively parallel system with really different
performance characteristics. My recommendation here is to wait for Snow
Leopard and then hope OpenCL delivers on its promise.

3. Multiple processes. Again Xcode is a prominent example of this approach,
where you can see it spawn multiple instances of gcc when compiling. This is
often talked about as being an easier, safer way to go than multithreading
because the OS protects processes from each other and forces a better separation
of concerns. I don't buy it, personally. For just about any non-trivial program, a
dead subprocess is going to mean that the whole thing comes crashing down, and
all you've done by splitting it into multiple processes is make it harder to debug.
What's worse, OS limits on the number of processes tend to be frighteningly low,
so your program would need to gracefully handle being unable to spawn as many
subprocesses as it likes. (And all the other apps on the system would need to as
well!)

4. Multithreading. The standard technique. Often very difficult to get right, and
very difficult to debug, but potentially very rewarding in terms of performance.
Threads can also help to better organize a program. It's often much cleaner to put
long-running processing or blocking operations into a separate thread than to try
to multiplex them together.

Multithreading is the one we're most familiar with and the one that's the most generally

useful. It's useful because it's very generalized, so you have various ways to use
multithreading to actually get things done:

12

1. Locks. "Standard" multithreading. You have shared data protected by locks.
Acquire the locks before you fiddle with the data. Often used to build more
sophisticated machinery. This level can be tricky to get right so I recommend
avoiding it where you can, and using it sparingly to build better abstractions
where you must.

2. Message passing. With message passing, you avoid shared data, and have
threads communicate using message queues instead. (The message queues
generally have shared data inside them, but that's an implementation detail.)
Cocoa has some nice facilities for this with the
-performSelectorOnMainThread: ... and
performSelector:onThread: ... calls. The threading-heavy language
Erlang uses this model extensively and is the main force behind its
multithreading power.

3. Operation units. This is kind of like message passing, except the operations just
fly off and get executed on a queue which uses threads outside your view. When
set to only execute one operation at a time, a queue can act like a synchronization
point, replacing locks in a way that's often easier to work with.
NSOperationQueue provides this and Grand Central Dispatch in Snow Leopard
is rumored to provide similar facilities.

4. Atomic/transactional objects. Rather than using mutual exclusion (locks,
queues) to avoid destroying shared data, you can build objects that operate using
transactions. Grab a snapshot, make changes, commit them. (Often this is
implemented as a loop: snapshot, change, try to commit and start over with a new
snapshot if something changed in the middle.) TransactionKit is a great example
of this sort of thing in a Cocoa context.

As for what to use, here are my thoughts. Avoid distributed computing unless your code
is going to be run by a single client with a lot of available hardware. Being able to snarf
up CPU cycles from idle hardware sitting around in the user's house sounds cool but just
doesn't pay off most of the time. Avoid GPGPU on the Mac until Snow Leopard ships
unless you have a really good application for it. OpenCL will make GPGPU a lot more
practical and flexible, so trying to shoehorn your computationally expensive code into
GLSL or Corelmage today just doesn't seem worth it.

Using multiple processes is a good idea if the subprograms are already written. If you're
invoking gcc as a subprocess, invoking it simultaneously on four files instead of one by
one is pretty easy. If you're writing your code from scratch, I don't recommend it unless
you have another good reason to write subprocesses, as it's difficult and the reward just
isn't there.

For multithreading, concentrate on message passing and operations. Multithreading is
never easy, but these help greatly to make it simpler and less error prone. Good OO
design will also help a lot here. It's vastly easier to multithread an app which has already
been decomposed into simple objects with well-defined interfaces and loose coupling
between them.

13

http://transactionkit.sourceforge.net/

Friday Q&A 2008-12-26: Blocks in Objective-C

Related Articles
Practical BIOCKSco.eiiiiiiiiiiiiieece s 146
Creating a Blocks-Based Object SyStemceccueeviieriieiiieniieiiecieeiceeee e 205
Error Returns with Continuation Passing Styleccccoviieiiiniiiiiiniieeieee 303
Trampolining Blocks with Mutable Code..........ccceeviiiiieiiiniiiieieeeeee 311
FULUTES. ...ttt et s 330
Compound FULUTES........ooouiiiiieiiieiieie ettt et 342
Background TIMETS........cocuiiiiiiiieiie ettt ettt 419

Welcome to another Friday Q&A. This week I thought I would take fellow amoeboid Jeff
Johnson's suggestion and talk about blocks in Objective-C.

The word "blocks" is kind of ambiguous, so to clarify, I'm not talking about the
compound statement structure which has existed in C since the beginning of time. I'm
talking about a new addition to the language being created by Apple which adds
anonymous functions to the language. [Note: since this chapter was written, Apple's
blocks implementation has been made public and is now completely mature and usable.
While this chapter remains relevant, good up-to-date documentation on blocks can now
be found on developer.apple.com.]

Since they're not available to the public in finished form yet, the discussion is going to be
a bit imprecise in terms of syntax. But since I mainly want to talk about what they will do
for us and not the absolute precise details of how to type them out, that's not a big
problem. First let's see how they look:

x = A{ printf("hello world\n"); }

That's a block. The funny caret before the braces is what distinguishes it from boring old
compound statements. Now we can simply call this block like so:

x();

And the resulting code will print "hello world". Now let's introduce a couple of
parameters:

x = A(int a, char *b){ printf("a is %d and b 1s %s", a,

bd; }
And then we can call this just the way you'd think:

x(42, "fork!");

14

http://developer.apple.com/

Now let's remove the parameters again:

int a = 42;

char *b = "fork!";

x = A printf("a i1s %d and b 1s %s", a, b); }
xQ);

This illustrates one of the really interesting things about blocks: they can capture
variables from their enclosing scope. This is not particularly interesting here (why didn't
we just pass a and b when invoking it?) but it gets really interesting when we start
passing the block around to other functions:

int a = 42;
char *b = "fork!";
callblock(A{ printf("a is %d and b is %s", a, b); });

When the callblock() function calls that block, the block will still get access to our
local variables a and b even though we never passed them to the function explicitly.

We're just about done with the basics of what blocks are. One more quick example, a
block that returns a value:

x = ACint n){ return n + 1; };
printf("%d\n", x(2));

This code will print "3". Note that there is no need to declare the type of the return value
as the compiler can simply infer it from the return statement.

So what's the big deal? A major advantage of blocks is that they essentially allow you to
write your own control structures in the language without having to alter the compiler. As
one example, take the for(... 1in ...) syntax that appeared in Leopard. This
syntax is a wonderful addition to the language. Previously we had to write a bunch of
code just to iterate over an array:

NSEnumerator *enumerator = [array objectEnumerator];
id obj;
while((obj = [enumerator nextObject]))

/7 finally we can do something with obj

And the new syntax cuts this down to a single line:

for(id obj in array)

15

Which is great. The only trouble is that we went years and years without it. We had to
wait for Apple to add it for us. With blocks, no more! You don't get quite the same
syntax, but you can get the same convenience with a method you wrote entirely yourself:

my_for(array, A(id obj){ /* loop body goes here */ });
Or in a perhaps slightly stranger but much more interesting object-oriented form:
[array do:A(id obj){ /* loop body goes here */ }1];

The implementation of the -do : method is left up to the reader, but rest assured that it's
relatively simple.

As another example, consider the @synchronized directive. This could be redone
using blocks too:

[obj synchronized:A{ /* this is protected by the lock */
s

OK, you say, I get it, but what's the big deal? After all, for/in and @synchronized
are already part of the language, why would you rewrite them?

Of course you wouldn't. That would be silly. Those examples serve only to illustrate the
idea: that you can build your own control structures. But of course it's only interesting to

build control structures that are new! So here are some ideas.

» Open a file and ensure that it gets closed when you're done:
[[NSFileHandle fileHandleForReadingAtPath:path]

closeWhenDone :A(NSFileHandle *handle){
/* use handle here */
H;

* Build a new array by working with the objects of an existing one:

newArray = [existingArray map:A(id obj){ return [obj
stringByAppendingString:@"suffix"]; }];

+ Filter the contents of an array:

newArray = [existingArray filter:A(id obj){ return
[obj hasPrefix:@"my"]; 1}1;

* Main thread synchronization:

16

/* threaded code */
PerformOnMainThread(A{ /* synchronized code */ });
/* more threaded code */

* Delayed execution:

PerformWithDelay(5.0, A{ /* will run 5 seconds later
¥ 35

¢ Parallel enumeration:

[Larray doParallelized:A(id obj){

/* will get executed on all of your CPU cores at
once */

3
And many other examples abound.

Another place where blocks will make things much nicer is when dealing with callbacks.
If you've ever written much Cocoa code you've probably had to write a sheet callback,
and it's a pain in the ass. If you need to pass variables through to the other side then it
gets really frustrating with code like this:

17

- (void)method {
int foo;
NSString *bar;
/* do some work with those variables */
NSDictionary *ctx = [[NSDictionary alloc]
initWithObjectsAndKeys:
[NSNumber numberWithInt:foo], @"foo",
bar, @"bar",
nil];
[NSApp beginSheet:sheet
modal ForWindow:window
modalDelegate:self

didEndSelector:@selector(methodSheetDidEnd: returnCode: contextInfo:)
contextInfo:ctx];
ks

- (void)methodSheetDidEnd: (NSWindow *)sheet
returnCode:(int)code contextInfo:(void *)ctx {
NSDictionary *ctxDict = ctx;
[ctxDict autorelease];

int foo = [[ctxDict objectforkKey:@"foo"] intValue];
NSString *bar = [ctxDict objectForKey:@"bar"];
/* do some more stuff with those variables */

}

Wow! What a pain that is. Since I removed all the stuff that does work, nearly everything
that remains is just boilerplate. Horrible boilerplate whose only purpose is to tell the sheet
who to call, and to pack up local information in a way that the sheet can give it back to
you later on. Now let's imagine we were redoing this API using blocks and see how it
would look:

- (void)method {
int foo;
NSString *bar;
/* do some work with those variables */
[sheet beginSheetModalForWindow:window
didEndBlock:A(int code){
/% do stuff with foo */
/% do stuff with bar */
/% do stuff with code, or sheet, or window, or
anything */
5
¥

18

Isn't that great? All that horrible boilerplate just flies right out the window. Code flow
suddenly becomes completely logical, you can read it top to bottom, and you can access
any local variables you please.

Let's take another example, sorting an array with a custom comparison function using
some variables that you pass in. NSArray has functionality for this, with the
-sortedArrayUsingFunction:context: method. The old-style code is
annoying, and I'm not going to write it. It's much like the sheet method above. You have
to define a separate function, way outside of your code where it's not really visible. You
have to set up the context to pass into it. If you're passing more than one thing then you
have to pass a dictionary (and unpack it) or a pointer to a struct. Now here's the blocks
version of a custom comparator:

sorted = [array sortedArrayUsingBlock:A(1id a, 1id b){
/% compare, use local variables to decide what to do,
run wild */

15

And that's all there is to it.

Callbacks are one of the most powerful things in C and Objective-C but in many
situations their use can be extremely difficult and unnatural. Blocks promise to allow
callbacks and custom control constructs to be created and used in a much more natural
fashion.

So far I've only shown examples of using a blocks API, but how about creating one?
Well, it's a little worse, but not much. The only problematic thing is that the syntax for
declaring a block type is kind of ugly, as it's modeled after function pointer syntax. But
it's not too bad, and the rest is nice and simple. For example, here's how you could write
that -map : method from above:

- (NSArray *)map:(id (M) (id))block { // takes an 1d,
returns an id
NSMutableArray *ret = [NSMutableArray array];
for(id obj in self)
[ret addObject:block(obj)];
return ret;

}

Pretty straightforward, especially considering the power it gives us.

Information on Apple's implementation of blocks is still a bit sparse. Some more details
can be found in a mailing list post to the Clang development list. For more purely
conceptual ideas on how blocks can be used, check out the Smalltalk language, where
blocks are used for virtually every control structure right down to if/then and basic loops.

19

http://lists.cs.uiuc.edu/pipermail/cfe-dev/2008-August/002670.html

Here's hoping that blocks allow for some major changes in how we work on Snow
Leopard!

20

Friday Q&A 2009-01-02: Pros and Cons of
Private APIs

It's a new year, and that means a new Friday Q&A! This week I'm going to take Steven
Degutis's suggestion and discuss the ups and downs of using private APIs.

Getting Started

I'm not going to discuss what private APIs are out there or how to figure them out, as that
would cause me to badly miss my deadline and make this thing way too long. Instead I
just want to address this question: should you use them at all, and if so, when?

There are two pretty obvious extremes to the answer, and a lot of people who believe
each end. One extreme is that private APIs should never be used, period, full stop.
They're bad, don't want to touch them, don't even acknowledge that they exist. The other
extreme is that they're fine and dandy, use them like you'd use anything else.

As with most things, I believe the truth lies somewhere in the middle. But where, exactly,
and how do you determine if something is worth using?

First let's review the disadvantages, which you're probably familiar with already. An API
is essentially a contract between the creator of the API (generally Apple in the context of
this blog) and the user of that API. When an API is public, the creator promises not to
change that API in an incompatible fashion. With private APIs no such promise exists,
and they can change at any time. This change can cause your application to malfunction,
crash, or refuse to start.

And the advantages? Well that one's easy. Private APIs let you do stuff you couldn't
otherwise do.

So like most of engineering, it's a tradeoff. You have benefits and disadvantages, and you
have to decide which one is more significant.

Elements of the Tradeoff

Using a private API is, ultimately, a maintenance issue. (Except on the App Store, where
it's a legal issue, but that's outside the scope of this post.) If you use nothing but public
APIs, your app is basically guaranteed to work forever. (Where "forever" really means
"until Apple decides not to maintain backwards compatibility anymore". But note that
ancient PowerPC-only Carbon apps still run on the latest Mac OS X, and that Classic
didn't disappear until 10.4; Apple still keeps old stuff working for a good long time.) If
you use a private API, your app is likely to break at some point.

But when? That's one of the big questions you need to answer. There are basically four
levels to consider:

21

http://lipidity.com/apple/warp-bend-squeeze-and-transform-windows-with-cgssetwindowwarp/
http://www.cocoadev.com/index.pl?NSMenuExtraTutorial
http://www.omnigroup.com/mailman/archive/macosx-dev/2004-March/051419.html
http://www.cocoadev.com/index.pl?MultiTouchTrackpad
http://www.cocoadev.com/index.pl?CoreGraphicsPrivate
http://www.cocoadev.com/index.pl?UndocumentedGoodness

1. Never. Sometimes a private API may be so fundamental and so widely used that

it gets essentially fixed in stone despite not being public. A good example of this
on Mac OS X is the mach APIs, which are technically private but which underly
everything at a very fundamental level.

Major releases. Most private APIs fall into this category, where you can be
reasonably (although never 100%) confident that they will continue to work
throughout the lifetime of the current major OS release. In other words, it will
keep working on 10.5 but is likely to break on 10.6. Typically private APIs end
up forming part of a support structure for the public APIs and can't be changed
without a major reworking of those public APIs, and that only happens with a
new major release.

Minor releases. Occasionally something can't even be relied upon to keep
working during the life of a major release. Early versions of LiveDictionary were
like this. They relied on fiddly internal details of WebCore's implementation, like
C++ method and ivar layout. These offsets were subject to change at pretty much
any time, so LiveDictionary generally broke every single time Safari got
updated. (Later on, public APIs became available that I was able to use instead,
which solved the problem once and for all. For more details of what was going
on under the hood in those dark days before the public APIs were available, see
Hacking C++ From C.)

Any time. Generally this means that you aren't using the private API right. This
is much more common than with public APIs since you don't have any
documentation, you have no guarantee as to the API's requirements, constraints,
preconditions, postconditions, etc.

Another big question you need to answer is how bad the break, when it comes, is likely to
be. Again, there are different levels to consider:

1.

98]

No effect. It's unlikely that you'll get here. If there's no effect from having it
break, why are you even using the thing?

. Lose a feature. Often you can write your code in such a way that the breakage is

likely to be detectable and so you can simply disable whatever feature uses it.
Crash your app. This is pretty common.

Crash other apps. For developers of stuff that loads into other programs this is
very common, for self-contained processes not so much. LiveDictionary did this.
When LiveDictionary broke, it didn't just crash, it crashed Safari too.

Which category you fall into depends not only on what you're using but how. For
example, LiveDictionary would toss up a warning and offer to disable itself for the
duration if the WebCore version was higher than what it knew about. A brave user could
try to use it anyway (and there was at least one time when that version changed in
unexpected ways and stopped this precaution from working) but this helped a lot.
Obviously the higher up this list you are, the better off you are.

22

http://www.eloquentsw.com/livedictionary.html
http://www.mikeash.com/?page=pyblog/hacking-c-from-c.html

And lastly you need to figure out how long it will take you to fix the break. This depends
greatly on your skill, your availability, what you're using, how critical it is, how it broke,
and other such factors.

Coming to a Conclusion

Now you have enough information to run the cost/benefit analysis. The benefit side is
pretty easy. The cost side can be determined by looking at how often you're likely to
break, how bad it's likely to be, and how much time and effort it will take to fix. If it's a
huge feature and will almost never break and will be trivial to fix when it does, then go
for it. If it's a minor feature and will cause huge problems when it breaks every three
months, pass. For LiveDictionary, the entire app was built around this feature, so it was
worth it even though it required frequent difficult fixes.

Remember that the cost is not just to you, but to your users. If you're really unlucky, the
break will be so bad that it's not even obvious that it's your fault, and they'll figure it out
only after much head-scratching. Once they do figure it out, they will hate you if your fix
doesn't come really fast. This means that for a really crucial and breakable feature, you
need to stay available and ready to create and release a fix.

Private APIs can be invaluable, but their use must be weighed carefully. Sometimes it
pays off very well, and sometimes it's a terrible choice. By carefully examining your
app's vulnerability to breakage and your ability to fix it, you can decide whether it's the
right move for you.

23

Friday Q&A 2009-01-09: Thread Safety in OS X
System Frameworks

Related Articles
Multithreaded Programming and Parallelism OVerviewccccoccevieveevieneencnnene. 11
The Good and Bad of Distributed ODbjJects..........c.eeveeriierieeiieiieeieeieeieeee e 56
Multithreaded Optimization in ChemicalBurnccceeeeviirieneriinicneiicnicneen 82
Care and Feeding of Singletonscocueeiiieiiieniiiiieicetee e 194
Dangerous Cocoa Calls.........c.eecieiiiiiiiiieeiieie et 236
Probing Cocoa With PYODbjC.......cccoiiiiiiiiiiieeeeeeee e 240
Using Accessors in Init and Dealloc...........ccoooiiiiiiiiiiiiieiiieeee 246
NSRUNLOOP INEETNALSoovtiiiiiiiieieee ettt 273
NSNOtICAtIONQUEUE.......cccuiiiieiieeiiee ettt e et rae e svee e aeeesaaee e 284
Implementing a Custom SIAETccueeiiiiiiiiiiiiieeeee e 382
Dealing with Retain CyClescoocuieiieiiiiiieiieiieeeeee e 392
What Every Apple Programmer Should Knowccccoeoeeiiiiiiiniiiniiieeie, 401
Leopard Collection CIASSES.........ccouieiieriieeiieiie ettt ettt 405
Implementing Equality and Hashingcccccoooiiiiiiiiiniiiieceeee 412
Implementing NSCOAINGcc.eeeiuieiiieiieriie ettt 459
Defensive Programming in COCOQecuuieiieriieiiieiieeiiesiie et 468

Greetings one and all. I caught my mistaken writing of "2008" in this blog post title
almost instantly instead of only noticing after I'd already posted it like I did last week, so
the year must be coming along. Welcome to the second Friday Q&A of 2009 (and only
the fourth in all human history!) where I'll be taking Ed Wynne's suggestion and talking
about the various meanings and implications of thread safety as they apply to Mac OS X
system frameworks.

Thread Safety? What's That?

Hopefully not too many readers are actually asking the above questions, but just as a
quick refresher, thread safety is about whether it's safe to access a particular module, API,
or data structure from multiple threads. These things are typically unsafe due to making
assumptions of single-threadedness, such as updating multiple pieces of data in a non-
atomic fashion, in such a way as to expose inconsistent data to the outside world. There's
the classic example:

X++;

Which is not thread safe (assuming X is globally accessible) because down at the very
bottom it breaks down into multiple operations:

24

get x
increment
store Xx

And if multiple threads are doing this at once, they interleave and you miss increments.
Not too dire here, but apply it to pointers and objects and you can hopefully see why
you'll crash at best, and silently corrupt data if you're unlucky.

So to start off with there are two kinds of thread safety in the world:

1. Not thread safe. The normal state. Code is not thread safe by default. Special
effort needs to be taken to make it thread safe, and if you haven't done it, your
code falls into this category.

2. Thread safe. Can be called from any thread without a care or worry. Nice to
have, often painful to make.

Three Kinds

But what does this really mean? Well, thread safe is easy enough to understand. But not
thread safe can't really mean it can't be called from any thread, because all code runs
from some thread.

Of course what it really means is that this code can't be run from more than one thread at
the same time.

But that doesn't really do it either. For example, NSMutableArray is not thread safe.
But you can call NSMutableArray from multiple threads simultaneously, as long as each
thread is working on a different array. So maybe we should say that thread unsafe means
that the code can't be run on the same data from more than one thread at the same time.

Well, that's better, but still not there. Take the ato1 () function. Not thread safe, says so
in the man page. But you only ever feed it constant data, and it's unsafe even if you feed
it completely different data on your different threads. What's the deal? Simple: behind the
scenes, it has some shared data.

How can you tell one from the other? We'll need another classification:

1. Never thread safe. The normal state. Code is not thread safe by default. Special
effort needs to be taken to make it thread safe, and if you haven't done it, your
code falls into this category.

2. Not thread safe with shared data. Can safely be called from multiple threads
simultaneously as long as each thread is dealing with a distinct set of data.

3. Thread safe. Can be called from any thread without a care or worry. Nice to
have, often painful to make.

It's actually really easy to write code that falls into category #2. All you have to do is not
have any global state, which is pretty common anyway. If you're writing an array class,

25

your method for adding a new object to the array isn't going to deal with global state, it's
going to deal with that one array. So while #1 may be the "normal state", #2 is actually
really easy to come by, and most code falls into that category.

The System Screws It All Up

These categories are sufficient in a relatively simplistic program which controls every
action taking place and for which all the code is known. It gets more complicated when
you start pulling in a ton of big, complex external frameworks such as AppKit and
Foundation. Take NSV1ew as an example. It can fall into category #1 or #3 depending on
what you're doing with it. (Drawing is safe, creation/resizing/etc. is unsafe.) But that #1 is
complicated by the fact that the shared global data which makes NSView unsafe can be
accessed by code that isn't yours.

NSView isn't just unsafe from multiple threads, it's main thread only. This is because
your NSView doesn't just belong to you, it belongs to the framework. And this means that
you can't synchronize all accesses to it, because some of those accesses come from code
that does not belong to you! Let's put this in its own paragraph, because it's important:

If an API is never thread safe and you do not absolutely control every access to this API,
then you can only call it from the main thread.

And since virtually every system API is going to be, at least potentially, called by other
system APIs, we can rewrite our three types of thread safety:

1. Main thread only. The normal state. Code is not thread safe by default. Special
effort needs to be taken to make it thread safe, and if you haven't done it, your
code falls into this category.

2. Not thread safe. Can safely be called from multiple threads simultaneously as
long as each thread is dealing with a distinct set of data.

3. Thread safe. Can be called from any thread without a care or worry. Nice to
have, often painful to make.

Singletons

Keep in mind that singletons qualify as global shared data. This has an important impact
on their thread safety. Practically speaking, it means that singletons provided by system
frameworks only ever fall into category #1 or #3. Take NSFileManager as an example.
It's listed as not being thread safe. What this really means is that [NSF1leManager
defaultManager] can only be safely used from the main thread, because you can't
control what other code might access it. (On 10.5 and above you can alloc/init your
own private instances which then fall into category #2.)

Terminology and the Apple Way

This is all fine and dandy except that Apple, in their infinite wisdom, does not always
distinguish between main thread only and not thread safe. To make things worse, they
even sometimes use the term thread safe to mean what we have defined here as not
thread safe.

26

Let's take that second one first, because it's pretty weird. As a concrete example, look at
the CFNetD1iagnostics API. The documentation for this API is full of quotes like
this:

This function is thread safe as long as another
thread does not alter the same CFNetDiagnosticRef at
the same time.

Huh??

So why is it labeled "thread safe"? What they're trying to convey here, through the fog of
inadequate terminology, is that this API falls into category #2 and not category #1. In
other words, you can use it from any thread as long as only one thread at a time is using
this API on any given piece of data. This as opposed to an API which requires you to call
it only from the main thread.

Other APIs are less explicit about it. The Search Kit reference simply states "Search
Kit is thread-safe". And yet I'm pretty sure it's not. Again, it's trying to convey that
Search Kit is in category #2 rather than category #1.

Why do they do this? Well, back in the day, on the classic Mac OS, nearly all code ran in
what might be considered the "main thread" today. As a consequence, nearly every API
required only calling it from there. Being able to run from multiple threads was novel and
unusual and was worth documenting. Alas, not only does this no longer make sense on
Mac OS X, but this sort of terminology abuse is actively destructive because it ends up
making guarantees which aren't actually true.

As an example of the first, look at NSAppleScript. In the big master guide it's
marked as being not thread safe. This is true! However what they don't tell you is that
NSAppleScript can only be safely used from the main thread, due to AppleScript
itself being a main thread only API. And yet it's right next to other classes such as
NSMutableArray which are clearly category #2.

Figuring It Out
So we've established the three basic categories of thread safety, and we've established that

Apple doesn't consistently distinguish between them in its documentation. So what do we
do?

Fortunately it's usually possible to figure out the real story.

1. Check the documentation. Not only the API documentation but also the big list.
Is the API listed as being thread safe? Is it written in a relatively unambiguous
way that makes it clear that this really is thread safe, and not the "thread safe"
that means "not thread safe"? Fortunately for us, this abuse of the term "thread
safe" is relatively rare and relatively obvious. It generally shows up in older APIs

27

http://developer.apple.com/DOCUMENTATION/CoreFoundation/Reference/CFNetDiagnosticsRef/Reference/reference.html
http://developer.apple.com/documentation/UserExperience/Reference/SearchKit/Reference/reference.html
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/chapter_950_section_2.html#//apple_ref/doc/uid/10000057i-CH12-SW4
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/chapter_950_section_2.html#//apple_ref/doc/uid/10000057i-CH12-SW4

which have no reason to be thread safe in the first place. If after all this you have
determined that your API is thread safe then you're done! If not go to the next
step.

. When in doubt, assume it's unsafe. In the absence of an explicit guarantee of

thread safety, consider the API to be unsafe. But what kind of unsafe? That's the
tricky thing.

. Does it access shared global data? Singletons fall into this category, as do things

like user interface elements. If the answer is yes, then it's category #1: main
thread only.

. Does it potentially invoke other code which may not be thread safe?

NSAppleScript falls into this category (scripting additions) as do things like
user interface elements which may broadcast notifications when they're
manipulated. Again, if the answer is yes, it's main thread only.

. If you got this far then it's probably category #2, thread unsafe, and usable on

any thread as long as you synchronize calls on shared data.

. To verify, think about how simple or self-contained an API is. If it's pretty self-

contained then it's very likely category #2. If it calls out to a zillion other things
then it's very likely category #1. Therefore we can be pretty sure that
NSMutableArray (self-contained) is merely not thread safe, whereas
NSAppleScript (calls out to all sorts of other stuff, including arbitrary third-party
components) needs to run on the main thread.

It would be good if Apple would properly distinguish between the different kinds of
thread safety. However you can usually do a good job of figuring out any given API if
you work it through.

28

Friday Q&A 2009-01-16: Interprocess
Communication

Related Articles
The Good and Bad of Distributed ODbjJects.........cceerieriiierieiiiiiieeieeieeieeee e 56

Happy Friday to everyone, and welcome back to another Friday Q&A. This week I'll be
taking Eren Halici's suggestion to discuss the various ways to do interprocess
communication on OS X.

IPC is an interesting and sometimes complicated topic, especially on OS X, which has a
veritable zoo of IPC techniques. It can be hard to decide which one to use, and sometimes
hard to even know what's available.

OS X is a funny mixture of mach and UNIX so you end up with IPC mechanisms from
both:

* Mach ports: The fundamental IPC mechanism in mach. Fast, light-weight,
extremely capable, and difficult to use. Mach ports will not only let you talk to
other processes, but do things as drastic as inject code into other people's
programs. The poor state of the mach documentation makes it hard to get started
and easy to make mistakes with it. On the other hand, the core mach_msg
function is probably the most optimized syscall in the system, so they're really
fast to use, and your machine will barely blink if you decide to allocate a million
mach ports at once.

o CFMachPort: A very thin wrapper around mach ports. CFMachPort
essentially exists to allow a mach port to be used as a runloop source. It
can also help with creating and destroying the ports. It helps a little with
receiving messages and not at all with sending them.

o CFMessagePort: This nice CoreFoundation wrapper around some mach
functionality makes it easy to set up synchronous back-and-forth
communication between two unrelated processes. You can start a server
with just a few lines of code. Another program can then look up that
server by name and message it. You get the speed advantages of mach
without all the messy stuff going on underneath.

o NSPort/NSMachPort/NSMessagePort: Cocoa has some mach port
wrappers too. They're mainly geared toward use with Distributed
Objects (more on that below) but can be used on their own as well, if
you're brave.

* POSIX file descriptors: There are actually several kinds of these but they can
all be used with the typical read and write calls once they're set up.

o Pipes: The archetypal POSIX IPC mechanism. If you've ever used the |
pipe operator in a UNIX shell, you've used a pipe. Pipes get created in

29

https://github.com/rentzsch/mach_star
https://github.com/rentzsch/mach_star
http://web.mit.edu/darwin/src/modules/xnu/osfmk/man/
http://www.rogueamoeba.com/utm/2008/12/12/an-raoperationqueue-fix/
http://www.rogueamoeba.com/utm/2009/01/10/raoperationqueue-102/

pairs within the same process, so they're good for communicating
between parents and children (or between two children of a single,
coordinating parent) but not so good for communicating between
unrelated processes. Make them with the pipe call.

o FIFOs: It's like a file, but it's like a pipe! A FIFO gets an entry in your
filesystem, just like a file, but writes don't go to the filesystem, instead
they go to whatever process has opened the fifo for reading. You can
make these with the mkf1fo call. The end result is a pipe that has a
filesystem entry, which can make it easy for two unrelated processes to
hook up. The processes don't even have to know that they're talking to a
fifo. Try it out in your shell:

$ mkfifo /tmp/fifo
$ cat /tmp/fifo

in another shell
cat > /tmp/fifo
type some junk here

o Sockets: You probably know these from working with TCP/IP, but they
can also be used to communicate locally, and not just by connecting to
localhost. If you create a socket in the AF_UNIX family you get a
socket that's only for local communication and uses more flexible
addressing than TCP/IP allows. AF_UNIX sockets can be created using
a filesystem path much like a FIFO by using the socket and bind
calls, but allowing multiple clients and more options for how the
communication works. They can also be created anonymously using the
socketpair call, giving you something much like a pipe, except
bidirectional.

* Shared memory: Shared memory is a magical piece of memory which appears
in multiple processes at once. In other words, you write to it from process A, and
read from it in process B, or vice versa. This tends to be very fast, as the data
itself never touches the kernel and doesn't have to be copied around. The
downside is that it's really difficult to coordinate changes to the shared memory
area. You essentially get all of the disadvantages of threaded programming and
most of the disadvantages of multi-process programming bundled together in one
neat package. Shared memory can be created using either mach or POSIX APIs.

» Miscellaneous, not really IPC: There are some techniques which don't really
count as "[PC" but can be used to communicate between programs if you want
to.

o ptrace: This system call exists mainly for writing debuggers, but could
in theory be used to do non-debugger things too. Not recommended,
included only for completeness.

o Files: Sometimes it can be useful to communicate using plain old files.
This can be as simple as creating a lock file (a plain empty file that
works simply by being there) for mutual exclusion, or you can transfer
actual data around by writing it to a file, then having the other program
read it. This tends to be inefficient since you're actually writing to the
filesystem, but it's also easy and nearly universal; every application can
read files!

Those are all what I would call system-level functionality, things which are either
provided directly by the kernel/libSystem, or which are thin wrappers around them. OS X
also provides a bunch of higher-level IPC mechanisms at the framework level:

» Apple Events: Scourge of the Skies, Champion of the Ugly Contest, King Slow,
Emperor Horrible. Apple Events are all of these things, but they're also
tremendously useful. They're the only IPC mechanism which is universally
supported by GUI applications on Mac OS X for remote control. Want to tell
another application to open a file? Time for Apple Events. Want to tell another
application to quit gracefully? Apple Events time. Underneath it all, Apple
Events are built on mach ports but this is mostly not exposed in the API.

o AppleScript: Everything Apple Events is and worse, but still often
useful, AppleScript is a scripting language built on top of Apple Events.
Generally it's best to avoid AppleScript and simply send the
corresponding raw Apple Events instead, either directly or through a
mechanism like Scripting Bridge. AppleScript support is the standard
way to allow users to script your application, although if you ever try to
add AppleScript support to your application you'll find yourself wishing
for a different standard.

 Distributed Objects: It's like Objective-C, but it happens over there! DO gives
you proxy objects that can be used (mostly) just like local objects, with the exact
same syntax and everything, except that your messages fly across to the other
process and get executed there. DO normally runs over mach ports but can also
be used with sockets, allowing it to work between computers as well. DO is
really cool technology and it's the sort of thing that tends to blow people's minds
when they come to Objective-C from lesser languages such as Java or C++.
Unfortunately DO is also really old and crufty and tends to be strangely
unreliable. This is especially true when using it with sockets to talk to remote
machines, but is even true when using it locally. DO is also completely non-
modular, making it essentially impossible to swap out the IPC mechanism it uses
for something custom (like if you want to encrypt the stream). It is worthy of
investigation if only to learn about how it works, and despite the shortcomings
can still be very useful in certain situations.

 Distributed Notifications: These are simple one-way messages that essentially
get broadcast out to any process in the session that's listening for them.
Extremely easy to use, and available in both Cocoa and CoreFoundation flavors.
(And they interoperate!) The downside is that they don't guarantee delivery and

31

they're very resource-intensive due to potentially messaging every application on
your system. They would be completely unsuitable for something like
transmitting a large picture to another process, but are great for simple one-off
things like "I just changed my preferences, re-read them now". Internally this is
implemented by using mach ports to talk to a centralized notification server
which manages the task of getting notifications to where they want to go.
Pasteboard: Probably the IPC mechanism that you've directly used the most.
Every time you copy and paste something between applications, that's [IPC
happening! Inter-app drag and drop also uses the pasteboard, and it's possible to
create custom pasteboards for passing data back and forth between applications.
Like distributed notifications, pasteboards work by talking to a central
pasteboard server using mach ports.

So which one is right for you? Well, it all depends on what you're doing. I've used nearly
every one of these to accomplish different things over the years. You'll have to see which
one fits your problem best, and I hope the above gives you a good place to get started.

32

Friday Q&A 2009-01-23: How Key-Value
Observing Works

Welcome to the first Friday Q&A of the new Presidential administration. Unlike Mr.
Obama, I'm afraid of change and so this week's edition will be just like all the other ones.
This week I'll be taking Jonathan Mitchell's suggestion to talk about how Key-Value
Observing (KVO) is actually implemented at the runtime level.

What Is It?

Most readers probably know this already, but just for a quick recap: KVO is the
technology that underlies Cocoa Bindings, and it provides a way for objects to get
notified when the properties of other objects are changed. One object observes a key of
another object. When the observed object changes the value of that key, the observer gets
notified. Pretty straightforward, right? The tricky part is that KVO operates with no code
needed in the object being observed... usually.

Overview

So how does that work, not needing any code in the observed object? Well it all happens
through the power of the Objective-C runtime. When you observe an object of a
particular class for the first time, the KVO infrastructure creates a brand new class at
runtime that subclasses your class. In that new class, it overrides the set methods for any
observed keys. It then switches out the 1Sa pointer of your object (the pointer that tells
the Objective-C runtime what kind of object a particular blob of memory actually is) so
that your object magically becomes an instance of this new class.

The overridden methods are how it does the real work of notifying observers. The logic
goes that changes to a key have to go through that key's set method. It overrides that set
method so that it can intercept it and post notifications to observers whenever it gets
called. (Of course it's possible to make a modification without going through the set
method if you modify the instance variable directly. KVO requires that compliant classes
must either not do this, or must wrap direct ivar access in manual notification calls.)

It gets trickier though: Apple really doesn't want this machinery to be exposed. In
addition to setters, the dynamic subclass also overrides the -class method to lie to you
and return the original class! If you don't look too closely, the KVO-mutated objects look
just like their non-observed counterparts.

Digging Deeper
Enough talk, let's actually see how all of this works. I wrote a program that illustrates the
principles behind KVO. Because the dynamic KVO subclass tries to hide its own

existence, I mainly use Objective-C runtime calls to get the information we're looking for.

Here's the program:

33

